
486

J. Great Lakes Res. 27(4):486–502
Internat. Assoc. Great Lakes Res., 2001

Tree-Structured Modeling of the Relationship Between Great Lakes
Ice Cover and Atmospheric Circulation Patterns

Sergei Rodionov, Raymond Assel,* and Lynn Herche

Great Lakes Environmental Research Laboratory,
2205 Commonwealth Blvd.
Ann Arbor, Michigan 48105

ABSTRACT. Seasonal maximum ice concentration (percentage of lake surface covered by ice) for the
entire Laurentian Great Lakes and for each Great Lake separately is modeled using atmospheric telecon-
nection indices. Two methods, Linear Regression (LR) and Classification and Regression Trees (CART),
are used to develop empirical models of the interannual variations of maximum ice cover. Thirty-four
winter seasons between 1963 and 1998 and nine teleconnection indices were used in the analysis. The ice
cover characteristics were different for each Great Lake. The ice cover data lent itself better to CART
analysis, because CART does not require a priori assumptions about data distributions characteristics to
perform well. The stepwise LR models needed more variables, and in general, did not explain as much of
the variance as the CART models. Two variables, the Multivariate ENSO index and Tropical/Northern
Hemisphere index, explained much of the interannual variations in ice cover in the CART models. Com-
posite atmospheric circulation patterns for threshold values of these two indices were found to be associ-
ated with above-and below-normal ice cover in the Great Lakes. Thus, CART also provided insight into
physical mechanisms (atmospheric circulation characteristics) underlying the statistical relationships
identified in the models. 
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INTRODUCTION 

The Laurentian Great Lakes (Fig. 1) are located
in the mid-latitudes of North America. The ice
cover that forms during the winter affects the ecol-
ogy and economy of the region. Ice cover impacts
the winter lake aquatic system (Magnuson et al.
1997), winter shipping activity (Assel et al. 2000),
hydropower generation (International Niagara
Working Committee 1983), shore installations
(Wortley 1978), lake effect snowfall (Burrows
1991), and lake evaporation and water levels (Cro-
ley and Assel 1994). 

Atmospheric circulation is a key factor affecting
the temporal and spatial variability of ice cover
through mass and energy transport across the
lake—atmosphere boundary. The mechanisms of
this control are both direct and indirect. A direct, or
mechanical, effect of wind on ice cover includes the
destruction of the ice field and spatial redistribution
of ice (e.g., piling it up on one or another side of
the lake). One strong storm in the beginning of ice
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season can completely destroy a newly formed ice
cover even if air temperature is below freezing. In
addition to the direct impact, strong winds increase
vertical mixing of water thereby increasing water
temperature in the surface layer. 

Frequency of storms over a lake and the direction
of air advection are related to large-scale atmos-
pheric circulation patterns. Rohli et al. (1999) have
examined the linkage between regional scale atmos-
pheric circulation in the Great Lakes basin and con-
tinental- to hemispheric-scale circulation patterns.
Their results support the notion that the regional at-
mosphere undergoes shifts consistent with the
broader-scale circulation. A consideration of atmos-
pheric circulation on a space scalelarger than the
lake basin becomes particularly important as the
time scale of regional processes under investigation
increases. In this study the characteristics of ice
cover that pertain to the entire winter season are
used to study variations of ice cover from one sea-
son to another. The interannual variations in ice
cover are a climatological problem and require a
global perspective. 
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The interannual variability in the wintertime at-
mospheric circulation is dominated by a number of
modes that stand out above the background contin-
uum (Kushnir and Wallace 1989). These modes are
also known as teleconnections because they exhibit
in-phase or out-of-phase correlations between re-
gions (often called “centers of action”) separated by
large distances. Each teleconnection pattern is char-
acterized by an index that is most commonly calcu-
lated as a combination of 500/700-hPa geopotential
height anomalies in the centers of action or as prin-
cipal component scores of the corresponding empir-
ical orthogonal function. 

From a practical point of view teleconnection in-
dices are a compact, parametric way to describe the
complex dynamics of large-scale atmospheric circu-
lation. They are particularly useful in modeling the
relationships with regional climatic characteristics.
For example, Yarnal and Leathers (1988) have

found that the interannual variability of the Penn-
sylvania climate is related to two important North-
ern Hemisphere teleconnections: the Pacific/North
American (PNA) and North Atlantic Oscillation
(NAO) patterns. Hartley and Keables (1998) have
demonstrated that winter snowfall in New England
is associated with a meridional circulation regime,
as indicated by a negative NAO index. They have
found no direct association with the PNA index, but
noticed that it can modulate the association with the
NAO. According to Rohli et al. (1999), the regional
atmosphere over the Great Lakes experiences the
effect of both the PNA and NAO patterns. Evidence
of PNA teleconnections with Great Lakes climatic
variables was presented by Assel (1992). In a previ-
ous paper Assel and Rodionov (1998) found that
Great Lakes ice cover is most strongly correlated
with the Tropical/Northern Hemisphere (TNH)

FIG. 1. Lake averages (winters 1963 to 1998) of maximum Freezing Degree-Day (FDD) and
November heat storage. The FDD accumulations on each Great Lake are calculated from data
given in Assel et al. (2000) and lake averages (1962 to 1995) of November heat content is calcu-
lated from Croley (1992).
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index, particularly for the detrended time series on
Lake Michigan. 

The El Niño/Southern Oscillation (ENSO) im-
pacts on the North American climate stimulated re-
search on implications for the Great Lakes. The
1982/83 El Niño event (Assel et al.1985) had much
below average ice cover in the lakes as did the
1997/98 El Niño event (Assel 1998). Records for
winters 1963 through 1990 (Assel and Rodionov
1998) showed that 46% of the lowest quartile of an-
nual maximum ice covers occurred during El Niño
events. The atmospheric flow over the Great Lakes
appears to be less disturbed during El Niño events
(Angel et al.1999) with less frequent cyclones dur-
ing El Niño years than non-ENSO years. Rohli et
al. (1999), however, have found no strong associa-
tion between Great Lakes regional surface circula-
tion and ENSO events. This may be a result of a
non-linear response of Great Lakes climatic vari-
ables to ENSO events.

The purpose of this study is to compare empiri-
cally two methods of modeling the relationship be-
tween ice cover and atmospheric teleconnection
patterns. The first method is a conventional linear
regression analysis. The linear regression (LR)
model is usually used as the first choice if no 
a priori information exists about the functional
form of the relationship. The second method is
called Classification and Regression Tree (CART)
analysis. As the name suggests, CART is a single
procedure that can be used to analyze either cate-
gorical (classification) or continuous (regression)
data. Classification trees were used (Rodionov and
Assel 1999) to develop an empirical classification
of atmospheric circulation patterns associated with
below-normal, normal, and above-normal ice cover
in the Great Lakes. Here CART will be used to
analyze a relationship between atmospheric circu-
lation and ice cover presented as continuous
variables in regression trees. CART and linear re-
gression models will be compared in terms of 
their accuracy, complexity, and ability to provide
meaningful interpretation of the results and to get
insight into the mechanisms of the relationship. 

DATA

Ice Cover

The ice cover data used in this study represent a
set of 34 values of maximum winter ice cover for
winters 1963 through 1998, excluding winters 1996
and 1997, for which data were not available at the
time of study. Maximum winter ice cover was used

in this study because of its relatively long period of
record of large-scale ice extent on the Great Lakes.
Estimates of maximum ice extent were made from
operational ice charts produced by the National Ice
Center, U.S. Coast Guard, U.S. Army Corps of En-
gineers, National Oceanic and Atmospheric Admin-
istration, and the Canadian Ice Service (Assel and
Rodionov 1998). The total ice coverage of the five
Great Lakes (expressed as a percent of total surface
area covered by ice) is calculated as the weighted
sum of the ice-covered areas of the five Great
Lakes. 

Ice cover formation can be considered to be a
threshold process (Assel 1991). Ice cover extent re-
mains low until the number of freezing degree-
days (FDDs) reaches a certain threshold, after
which ice cover experiences rapid growth. The
threshold is basically a function of geographical
position and heat storage of the lake. Thus, for
Lake Superior, the northernmost among the Great
Lakes (Fig. 1), seasonal accumulations of FDDs
usually exceeds the threshold, and annual maxi-
mum ice cover is frequently greater than 70% (Fig.
2b). As a result, the median value of maximum ice
cover on Lake Superior is higher than the mean
value, and the skewness is negative (Table 1). The
distribution of annual maximum ice cover for Lake
Erie (Fig. 2e) is even more skewed to the left with
only one out of every four winters having less than
90% ice cover. Despite its southernmost position
and the highest surface air temperature, it is often
almost entirely covered by ice. Unlike Lake Supe-
rior, however, the major factor driving negative
skewness is the relatively low heat storage of this
shallow lake. In contrast to Lakes Superior and
Erie, maximum ice covers for Lakes Michigan and
Ontario (Fig. 2c and 2f) are right skewed. Lake
Ontario with much larger heat storage than Lake
Erie but only marginally higher freezing degree-
days (Fig. 1) has the lowest maximum ice cover
among the Great Lakes with half of the winters not
exceeding 20%. Lake Michigan is significantly
elongated from north to south with ice mostly in
the north and usually less than 50%. Lake Huron
(Fig. 2d) is the only lake with the median close to
the mean. It features a strongly negative kurtosis
(Table 1) and is close to a uniform distribution.
Considering the Great Lakes together and combin-
ing ice cover proportionally to surface area, the ice
cover distribution is similar to Lake Huron (Fig.
2a).
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Teleconnection Indices

Teleconnection indices used as independent vari-
ables are as follows:

1) The Polar/Eurasian index (POL)
2) The West Pacific index (WP)
3) The East Pacific index (EP)
4) The Pacific/North American index (PNA)
5) The Tropical/Northern Hemisphere index

(TNH)
6) The North Atlantic Oscillation index (NAO)
7) The East Atlantic index (EA)
8) The Multivariate ENSO Index (MEI)
9) The Southern Oscillation Index (SOI)

The first seven of these indices are regularly calcu-
lated by the Climate Prediction Center (CPC), of
NOAA and are available over the Internet1. In this
study mean winter (DJF) values were used of all the
indices except the TNH, for which February data
were absent, and so the mean value of December
and January was used. The diagnostic procedure
used by the CPC to identify teleconnection patterns
is the Rotated Principal Component analysis—RPC
(Barnston and Livezey 1987). The teleconnection
patterns are identified based on the entire flow
field, not just from height anomalies at a few select

FIG. 2. Histograms and empirical frequency distribution functions
for ice cover in the Great Lakes.

1 http://www.cpc.noaa.gov/data/indices/
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locations. The VARIMAX rotation procedure used
by the CPC retains the temporal orthogonality be-
tween the RPCs (Kushnir and Wallace 1989).
Therefore, teleconnections can be considered as in-
dependentmodes of large-scale atmospheric circu-
lation. 

To characterize ENSO events two indices were
used: 1) the Southern Oscillation Index (SOI), and
2) the Multivariate ENSO Index (MEI). The SOI
was used in its standard form as difference in SLP
between Tahiti and Darwin. These data are also
available from the CPC web site but they are not in-
dependent of each other and no claim is made for
their independence of the seven indices noted
above. The MEI (courtesy of K. Wolter) can be un-
derstood as a weighted average of the main ENSO
features contained in the following six variables:
sea-level pressure, the east-west and north-south
components of the surface wind, surface sea tem-
pearature, surface air temperature, and total amount
of cloudiness. Positive (negative) values of the MEI
represent the warm (cold) ENSO phase. The MEI is
computed separately for each of 12 sliding bi-
monthly seasons (Dec/Jan, Jan/Feb, . . . , Nov/Dec).
All seasonal values are standardized with respect to
both season and the 1950 to 1993 reference period.
In this study only Dec/Jan values of the MEI were
used (Wolter and Timlin 1998).

CART METHOD

CART is an analysis tool for partitioning data
(Breiman et al. 1984). Some recent applications in
atmospheric and hydrological sciences include:
Burrows and Assel 1992, Rodionov 1994, Spear et
al. 1994, Burrows et al. 1995, Zorita et al. 1995.
CART presents its results in the form of decision
trees using methodology known as binary recursive
partitioning. The process is binary because parent
nodes are always split into exactly two child nodes,
and recursive in repeatedly treating each child node
as a potential parent. 

CART’s goal in forming a regression tree is to
partition the data into homogeneous (low variance)
terminal nodes; the mean value in each node is its
predicted value. The tree-growing process is based
on the least-squared deviation method of finding
the best split at each node using the “improvement”
(or reduction) in variance due to the split, calcu-
lated as:

Improvement = σ2
p – (nl/np × σl

2 + nr /np × σr
2), 

where σ2
p, σl

2, and σr
2 (np, nl, and nr) are variances

(number of observations) respectively, in the parent,
left child, and right child nodes. The best split s
maximizes the improvement.

CART and LR models have an important com-
mon feature. CART fits a simple 1 factor two level
Analysis of Variance (ANOVA) model to a group of
observations as it computes the variance within the
observation partition based on a split of the inde-
pendent variable X. The values of the (final) group
means are used in post-hoc predictions. A simple
regression extends such an ANOVA to a propor-
tional relation (plus constant) between the X and Y
variables instead of “dummy” variables, which
merely encode the partition. CART and LR differ,
however, in two fundamental respects. First, unlike
ANOVA in which the partition is fixed in advance,
CART defines the groups by using the variance
minimization (or, equivalently, maximizing the
“goodness of fit”) thus resulting in a very nonlinear
relation. Second, unlike ANOVA which fits one re-
lation to the whole set of observations, CART only
does this for single nodes, which are, except for the
root node, proper subsets of the whole.

One crucial question in CART analysis is when
to stop growing a tree, i.e., when to stop splitting
nodes. As in most other statistical analyses it is a
trade-off between predictive precision and model
simplicity (Bohanec and Baratko 1994). With re-
gression trees, simplicity is obtained by selecting
trees with fewer terminal nodes, while precision is

TABLE 1. Statistical characteristics of ice cover variations in the Great Lakes.

Statistic All Lakes Superior Michigan Huron Erie Ontario

Mean 58 69 39 66 87 27
Median 59 81 32 68 95 20
Std. Dev.* 20 27 23 22 21 20
Skewness 0 –0.9 1.2 –0.1 –2.8 1.5
Kurtosis –0.4 –0.6 0.8 –1.2 7.9 2.9

* Standard Deviation—rounded to the nearest whole number
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gained by allowing more terminal nodes. Various
stopping rules can be used to automate CART, such
as minimum number of cases in a node, minimum
improvement value, or maximum depth of the tree.
Sometimes these stopping rules produce poor re-
sults, because a node that might not split well at one
level might yield very informative splits if the tree-
growing process continued just a little further.
Therefore, it is often recommended to grow a maxi-
mal tree when further splitting becomes impossible
and then prune it back. The best tree is the one that
strikes a balance between predictive precision and
comprehensibility. From ice cover data available
for this analysis (34 winters), the final trees were
not more than three levels deep and the number of
independent variables in the CART models was
equal or less than that in the corresponding LR
models. 

CART uses two methods to assess its accuracy.
The preferred method is to use a separate test data
set. When data are scarce, CART uses cross-valida-
tion to assess its goodness of fit. The learning sam-
ple is divided into 10 roughly equal parts. CART
takes the first nine parts of the data (the learning
sample), constructs the largest possible tree, and
uses the remaining 1/10 of the data to obtain initial
number of misclassifications (error rate) of selected
sub-trees. The same process is then repeated on an-
other 9/10 of the data while using a different 1/10
part as the test sample. The process continues until
each part of the data has been held in reserve one
time as a test sample. The results of the 10 mini-test
samples are then combined to form error rates for
trees of each possible size; these error rates are ap-
plied to the tree based on the entire learning sam-
ple. In the CART software used, cross-validation
could only be accomplished when CART automati-
cally grows the tree. Trees were not grown automat-
ically to permit more control over the modeling
process.

LINEAR REGRESSION

The models made by the multiple linear regres-
sion for comparison were composed by the forward
stepwise method from the complete list of indepen-
dent variables. The selection list was terminated at
the variable for which R-squared was not essen-
tially increased by using an additional variable. The
choice was deliberately made to liberally include
variables to reduce any chance that comparison
with CART would be influenced by missing a “crit-
ical” variable. The choice of a model was not sig-

nificantly dependent on the choice of forward,
backward, or true stepwise selection nor on the
entry or exit criteria, given the liberal selection
policy.

The ice cover data was transformed (Arc Sin of
Square Root of [% ice cover/100]) prior to the LR
analysis to insure the LR models would not predict
ice cover greater than 100% or less then 0%. The
regression coefficients given below are for the
transformed data. The modeled ice cover was trans-
formed back to percent ice cover for comparison
with CART modeled ice cover.

RESULTS

The CART models for each of the Great Lakes
and for combined ice cover for all the lakes are pre-
sented in Figure 3. The characteristics of these
models are summarized in Table 2. The same char-
acteristics for the LR models are also presented.
The CART models are often more compact than the
corresponding LR models in terms of the number of
parameters. When constructing the LR models, the
complexity of the model was limited by an empiri-
cal rule that a variable to be added to the model
should increase the percentage of explained vari-
ance by at least 4%. As the result, the final LR
models have 3 to 4 parameters. The CART models
have 2 or 3 parameters, but demonstrate equal or
better performance than the LR models (Table 2). 

Lake Superior

In the CART model for Lake Superior (Fig. 3a)
the first split on variable MEI separates a group of
nine winters for which MEI is greater than 0.8, i.e.,
winters of strong El Niño events. It was observed
that even a simple model with just one split can de-
scribe a significant portion of variation (Fig. 4a).
As previously noted, the number of FDDs for this
lake usually exceeds the threshold for extensive ice
cover. As a result, maximum ice cover usually fluc-
tuates around its median value of 80% with occa-
sional “spikes” of very mild winters. Six winters
had ice cover below 35% (1964, 1975, 1983, 1987,
1995, and 1998); all but 1975 were winters of
strong El Niño events. Figure 4a shows that a sim-
ple tree-structured model with just two output val-
ues (one for strong El Niño events and one for the
rest) can be a good first approximation of ice cover
on Lake Superior describing about 44% of the total
variance. Note that the MEI index for the LR model
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FIG. 3. CART models for ice cover in the Great Lakes. Numbers in each node are average value,
number of cases, percent of cases (in parentheses), and standard deviation. 
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(ICE_SUP = – 0.13MEI + 1.04) accounts for only
19% of total variance (Fig. 4b). 

Figure 4b reveals the deficiency of a simple re-
gression model that links Lake Superior ice cover
with the MEI index. This is a typical problem that
occurs with LR modeling. Since the model tries to
find the best fit based on all the data including the
outliers, it results in a systematic under-valuation of
most of the data and in an overvaluation of the ex-
tremely mild winters. Adding EA to the LR model
improves the percentage of explained variance to
43%, almost doubling the explained variance and
comparable to the simplest CART model with two
terminal nodes. This is, however, much lower than
63% for the CART model with the same two vari-
ables (Fig. 4c). It takes two more parameters, POL
and TNH, for the LR model to reach the accuracy
of the simpler CART model (Table 2 and Fig. 4d).
The best LR model (Fig. 4d) with four independent
variables is: ICE_SUP = 0.15TNH – 0.25EP –
0.17POL – 0.09MEI + 1.03. The LR model failed
by more than 30% for five winters (1967, 1969,
1976, 1987, and 1992).

Note that for the CART model in Figure 3a the
majority of cases (65%) are grouped in one rela-
tively compact node with mean value close to the
overall median. Three other terminal nodes contain
anomalous winters. Figure 4c demonstrates the im-
provement of modeling the anomalous winters
compared to the model with just two terminal nodes
(Fig. 4a). The percentage of the total variance in-

creased from 44% to 63%. Particular improvement
was achieved for extremely mild winters of 1983,
1987, 1995, and 1998. Three winters (1966, 1969,
and 1975) had absolute error of more than 30%.

Lake Huron

Ice cover on Lake Huron turned out to be diffi-
cult to model with both methods. The CART model
for Lake Huron (Fig. 3b) is similar to that for Lake
Superior (Fig. 3a) with two of three variables being
the same. The coldest 18 winters (53%) in one node
had average ice cover of 80%. Three mild winters
(1968, 1969, and 1991) also included should not be-
long to this group with ice cover of only 50%. A
failed attempt to separate these on the next step
suggests they have little in common in terms of at-
mospheric circulation modes. Despite this relatively
poor performance compared to other lakes, it still
significantly outperforms the LR model for Lake
Huron with four independent variables: ICE_HUR
= 0.11TNH – 0.24EP – 0.09POL + 0.08SOI + 0.99.
This LR model is very similar to that for Lake Su-
perior, except that the MEI index is replaced by an-
other ENSO index – SOI (Fig. 5b). In spite of the
similarity of the LR models for Lakes Superior and
Huron, the latter describes only 49% of total vari-
ance in ice cover compared to 66% for the former.
Two years (1967 and 1991) had absolute error of
more than 30%.

TABLE 2. Model parameters and performance characteristics: percent of explained vari-
ance (R2) and standard error. For linear regression models numbers in parentheses show
the percentage of explained variance given that preceding variables are in the model.

Lake Model Independent variables R2 Standard error

Superior CART MEI, EA 63 16.4
LR TNH(29), EP(14), POL(17), MEI(6) 66 16.0

Huron CART MEI, EP, EA 58 14.1
LR TNH(20), EP(19), POL(6), SOI(4) 49 15.5

Michigan CART TNH 29 18.0
CART TNH, MEI 66 13.0
LR TNH(24), POL(12), EP(14), PNA(5) 55 14.4

Erie CART MEI, POL 67 11.9
LR MEI(19), EP(8), POL(7) 34 16.6

Ontario CART EP, TNH 43 14.5
CART EP, TNH, POL 53 13.2
CART EP, TNH, POL, NAO 58 12.6
LR EP(21), TNH(15), POL(10) 49 13.7

All Lakes CART MEI, POL, EA, PNA 62 12.3
LR TNH(22), EP(16), POL(14), SOI(5) 57 13.5
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Lake Michigan

The CART model for Lake Michigan contains
two independent variables, TNH and MEI (Fig. 3c).
TNH was chosen first by both CART and LR pro-
viding an interesting comparison of simplified mod-
els for both methods (Table 2, Fig. 6a, Fig. 6b). The
CART model (Fig. 6a) splits on TNH giving a mild
winter value of 28% of ice cover or a cold winter
value of 52%. Note the approximately equal num-
bers of mild and cold winters identified by the split,

in contrast with models for Lakes Superior and
Huron. Variability is much higher for cold winters
than for mild winters. The model describes 29% of
the total variance. The simple LR model (Fig. 6b)
(ICE_MIC = 0.14TNH +0.68) describes 24% of the
total variance.

The CART model improves significantly with
one more level. The percentage of the explained
variance with four terminal nodes (Fig. 3c) in-
creases to 66%. Particular improvement (Fig. 6c)
was for the three coldest years on the lake (1977,
1979, and 1994) in one separate node. The fourth
coldest winter (1963) was not in this group, the
only winter when the model failed by more than
30%. Note that for the winter of 1978, ice cover on
Lake Michigan was less than for the other Great
Lakes, and the CART model reflects this.

The best LR model (Fig. 6d, ICE_MIC =
0.17TNH – 0.17POL – 0.16EP + 0.09PNA + 0.67)
is less accurate than the two variable CART model
describing only 55% of the total variance (11% less
than the CART model). The LR model failed on
two winters (1979) (1991) by more than 30%. 

Lake Erie

Lake Erie is another lake (with Lakes Superior
and Huron), where CART first uses MEI (Fig. 3d).
The split point, however, is different, and splits off

FIG. 4. Observed (+) and modeled (● ) ice cover
in Lake Superior. Numbers in top right corner are
percent of explained variance. a) CART model
with one split on MEI, b) LR model with MEI, c)
CART model from Figure 3a, d) LR model with
TNH, EP, POL, and MEI.

FIG. 5. Same as Figure 4, except for Lake
Huron. a) CART model from Figure 3b, b) LR
model with TNH, EP, POL, and SOI. 
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a group of only two winters (1983, 1998) when the
two strongest El Niño events of the century oc-
curred. The second split (left) was made on POL,
separating a group 23 (or 68%) winters with the av-
erage ice cover of 94%. The remaining nine mild
winters have rather high variability. Overall, this
simple model (Fig. 7a) with just two splits de-
scribes 67% of the total variance.

Lake Erie is the only lake where MEI was cho-
sen by the LR model: ICE_ERI = –0.13MEI –
0.14EP – 0.10POL + 1.28. The MEI itself describes
19% of the total variance; two other variables, EP

and POL, increase that to 34%. This is still about
half that achieved by CART. Figure 7b shows that
the LR model substantially over predicted in 1991
and 1998. 

Lake Ontario

Ice conditions on Lake Ontario are much less se-
vere than on the other Great Lakes with maximum
annual ice cover around 25% and rarely reaching
50%. The lake was almost completely frozen only
once (1979) (Fig. 8a). CART first (Fig. 3e) sepa-
rates cold winters using EP. This was also the first
parameter chosen for the LR model: ICE_ONT =
–0.18EP + 0.11TNH –0.10POL + 0.53, which cap-
tures 49% of the total variance (Table 2, Fig. 8b). A
CART model of two splits (EP, TNH) has 43% of
the total variance (Table 2). The node with highest
mean ice (54%) is the chief impediment to improv-
ing the model. It had the 3 coldest years (1978,
1979, 1994) and 2 years (1993, 1995) with medium
and low cover. Apparently minor shifts in atmos-
pheric flow patterns usually associated with cold
winters (meridional circulation—Assel and Rodi-
onov 1998) can result in average or mild winters,
making it difficult to separate cold winters into one
node.

When CART uses the same variables used by LR

FIG. 7. Same as Figure 4, except for Lake Erie.
a) CART model from Figure 3d, b) LR model with
MEI, EP, and POL. 

FIG. 6. Same as Figure 4, except for Lake
Michigan. a) CART model with one split on TNH,
b) LR model with TNH, c) CART model from Fig-
ure 3c, d) LR model with TNH, POL, EP and
PNA. 
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(three splits and four terminal nodes), the R2 in-
creases to 53% and surpasses that for the LR model.
One additional split by CART on NAO was done to
separate a group of seven very mild winters in one
node. Overall, the tree has approximately even dis-
tribution of winters among nodes and describes
58% of the total variance. 

Total Ice Cover

The right branch of the tree is the same as for
Lakes Superior and Huron, and the first split on the
left branch is the same as for Lake Erie (Fig. 3f).
One more split on PNA yields 5 terminal nodes
with 62% of the total variance. Three of the five
terminal nodes have almost the same average val-
ues so that the model (Fig. 9a) contains basically
three levels: below-, near- , and above- normal. The
best LR model (Fig. 9b), ICE_TOT = 0.10TNH –
0.19EP – 0.11POL + 0.05SOI + 0.89, had the same
structure as for Lake Huron and describes 57% of
the total variance (Fig. 9b).

DISCUSSION

One of the most appealing features of the CART
method is its ability to provide an easy and mean-
ingful interpretation of statistical relationships.

Using CART a previous analysis (Assel and Rodi-
onov 1998) was expanded by identifying threshold
values of individual indices and combination of in-
dices associated with above and below average ice
cover and related atmospheric circulation patterns.
These results are portrayed in the form of decision
trees (Fig. 3). Another (equivalent) form of presen-
tation is a set of IF-THEN rules (Rodionov and
Martin 1996, 1999). Each terminal node of the tree-
structured model for Lake Superior (Fig. 3a) can be
written as a rule. For example, the second node is
equivalent to: IF MEI > –1.1 AND MEI ≤ 0.8,
THEN ice cover = 83% (± 17%). This rule and sim-
ilar rules for other lakes suggest a strong associa-
tion between Great Lakes ice cover and ENSO
(MEI) events in the equatorial Pacific. This associa-
tion, noted by Assel (1998) and Assel and Rodi-
onov (1998), is further explored here. 

Another index important for modeling Great
Lakes ice cover is TNH. This index was at the root
node of the CART model for Lake Michigan (Fig.
3c) and the second node for Lake Ontario (Fig. 3e).
Without the MEI index, the TNH index would be
the best choice on all the lakes, except Lake Erie.
Since the TNH index significantly correlates with
ice cover on Lakes Superior, Michigan, Huron, and
total ice cover at the 99% level (Table 3) and with
Lake Ontario at the 95% level, it is not surprising

FIG. 8. Same as Figure 4, except for Lake
Ontario. a) CART model from Figure 3e, b) LR
model with EP, TNH, POL, and NAO. 

FIG. 9. Same as Figure 4, except for combined
ice cover on all the lakes. a) CART model from
Figure 3f, b) LR model with TNH, EP, POL, and
SOI. 
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that this index was chosen first in the LR models
for those lakes. Apparently these two indices—MEI
and TNH—are the teleconnections associated with
interannual variations of ice cover in the Great
Lakes. Below their role is considered in detail.

The MEI

The MEI index was used to split the root nodes
(Fig. 3) for Lakes Superior, Huron, Erie, and total
ice cover. Except for Lake Erie, the splitting point
was the same. If MEI is greater than 0.8 (strong El
Niño events) nine winters have much below aver-
age ice cover: 1964, 1966, 1973, 1983, 1987, 1988,
1992, 1995, and 1998. On Lake Superior, for exam-
ple, the average ice cover during those winters was
only 39%, or 30% below the overall average. For
Lake Erie, CART (Fig. 3d) placed the two strongest
El Niño events (1983 and 1998) in a separate node.

A composite map of 700-hPa height anomalies
for the nine winters with MEI index greater than 0.8
(Fig. 10a) shows a typical response of the Northern
Hemisphere circulation to El Niño events during
the past three decades. The Aleutian low is much
deeper than normal and coupled with a positive
anomaly in the subtropical latitudes. This implies
strong north-south gradients in geopotential heights
and hence vigorous zonal circulation over the North
Pacific. A characteristic feature of atmospheric cir-
culation over North America is a positive 700-hPa
anomaly centered over the Great Lakes. It coincides
with the area of strongest correlation between Great
Lakes ice cover and 700-hPa heights over the
Northern Hemisphere (Assel and Rodionov 1998).

Positive 700-hPa height anomalies in this area indi-
cate that a climatological (quasi-stationary) upper
atmospheric trough over eastern North America is
less developed, and the Polar jet stream is more
zonally oriented. Under this type of circulation sur-
face air temperature anomalies are positive over
much of the continent including the Great Lakes
basin (Fig. 10b). 

As the CART models for Lakes Superior (Fig.
3a), Huron (Fig. 3b), and total ice cover (Fig. 3f)
suggest there is still a significant variability in ice
cover within this group of nine El Niño winters.
Winters in the Great Lakes basin are especially
mild, and the amount of ice cover is minimal if El
Niño events are accompanied by strong zonal at-
mospheric circulation over the eastern North At-
lantic. The models describe this as MEI > 0.8 and
EA > 0.6. If, however, the EA index is less than or
equal to 0.6, ice cover is close to normal. 

Although ice cover tends to be above normal dur-
ing non-El Niño events (MEI ≤ 0.8), the overall re-
lationship appears to be non-linear. As the CART
model for Lake Superior demonstrates (Fig. 3a),
three mild winters (1971, 1974, and 1976) occurred
during strong La Niña events (MEI ≤ –1.1). While
the 1999 winter was not included in this analysis
(because the data on ice cover are not ful ly
processed yet), most likely it will also fall into this
category. 

A similar asymmetry (nonlinearity) was noted in
a number of recent studies of ENSO effect on sea-
sonal precipitation, surface temperature, and tele-
connection patterns (Zhang et al. 1996, Livezey et

TABLE 3. Correlation coefficients (multiplied by 100) between ice cover and
atmospheric teleconnection indices.

Index All Lakes Superior Michigan Huron Erie Ontario

NAO –6 10 –23 7 –7 –15

EA –34 –32 –15 –22 –35 –3

WP –43 –51 –28 –35 –32 –18

EP –35 –30 –27 –39 –6 –44
PNA –11 –22 7 –3 –21 3

TNH 47 53 50 46 23 36

POL –29 –33 –34 –14 –27 –24

SOI 37 41 21 32 45 13

MEI –37 –46 –19 –34 –46 –10

Coefficients significant at the 99% level are indicated by bold type. Coefficients significant
at the 95% level are indicated by shading. The bootstrap method was used to estimate sig-
nificance of coefficients. (Efron and Tibshirani 1993)
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al. 1997, Montroy et al. 1998). For example, in Mo
et al. (1998) the response of the WP circulation pat-
tern to the ENSO signal is stronger during El Niño
events than during La Niña events. Composite win-
tertime (DJF) Surface Air Temperature (SAT)
anomaly maps over North America for El Niño and

La Niña (Hoerling et al. 1997), each an average of
nine cold or warm events between 1950 and 1996,
show a maximum warm temperature anomaly dur-
ing El Niño is located near Lake Superior. Lake Su-
perior resides near the zero temperature anomaly
line of the La Niña composite. The nonlinear com-
ponent of the SAT anomalies reaches its maximum
over the Great Lakes, suggesting separate treatment
here for the North American climate response to
warm and cold events.

The TNH

The response of ice cover to the TNH circulation
pattern appears to be more linear than to ENSO
events. It has been noted that there are relatively
high correlation coefficients between ice cover and
the TNH index (Table 3). Also, the TNH index
splits ice cover on Lake Michigan into two roughly
equal groups of winters, and the splitting point is
close to zero (Fig. 3c). The same splitting point is
for this index at the second node of the tree for
Lake Ontario (Fig. 3e). Moreover, forcing the TNH
index to the root node for Lake Ontario would split
exactly the same two groups of years as for Lake
Michigan. 

The TNH teleconnection pattern consists of two
primary anomaly centers: one is centered over the
Gulf of Alaska and another one of opposite sign is
over the Hudson Bay. This is clearly seen on the
composite maps for 19 winters when the TNH
index was equal to or below 0.2 (below normal ice)
(Fig. 11a), and for 15 winters when the index was
greater than 0.2 (above normal ice) (Fig. 11c). Both
figures show that the TNH pattern significantly
controls the strength and position of the Hudson
Bay low and hence southward transport of cold
Canadian air into the north-central United States
and the Great Lakes region. When the Hudson Bay
low is weak and cyclonic activity is enhanced in the
Gulf of Alaska, the winds over North America have
a significant northward component. As a result, sur-
face air temperatures are above normal over much
of the continent (Fig. 11b). Conversely when the
Hudson Bay low is strong and cyclonic activity in
the Gulf of Alaska is suppressed, frequent out-
breaks of cold air from the north keep temperatures
below normal (Fig. 11d).

The similarity between the composite maps in
Figures 10a and 11a suggests a relationship may
exist between the occurrence of a pronounced nega-
tive TNH pattern with warm ENSO winters (Barn-
ston et al. 1991). The 1997/98-winter season

FIG. 10. Composite maps of a) 700-hPa height
and b) surface air temperature anomalies for the
winters (DJF) when the MEI index is greater than
0.8. The winters are 1964, 1966, 1973, 1983, 1987,
1988, 1992, 1995, and 1998 (9 winters).
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provides a specific example, a strong warm ENSO
occurred concurrent with a strong negative TNH
pattern. Ice cover on the Great Lakes was at the
record low for the period since 1963 (Assel et al.
2000). 

The CART model for Lake Michigan (Fig. 3c)
suggests the hypothesis that the effect of El Niño on
ice cover may depend on the phase of the TNH pat-
tern. When TNH is mostly negative and El Niño is
strong ice cover is below normal and conversely

FIG. 11. Composite maps of a, c) 700-hPa height and b, d) surface air temperature anomalies for the
winters (DJF) when the TNH index is less or equal than 0.2 (left panel) and greater than 0.2 (right panel).
The winters for the left panel maps are 1964–70, 73, 74, 78, 80, 81, 83, 87, 88, 92, 93, 95, 98 (19 winters).
The winters for the right panel maps are 1963, 71, 72, 75–77, 79, 82, 84–86, 89–91, 94 (15 winters).
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with positive TNH and weak El Niño, ice cover is
above normal. This relationship can be written as
IF-THEN rules:

IF TNH ≤ 0.2 AND MEI > 0.8
THEN ice cover = 21% (± 6.4%), (1)

IF TNH > 0.2 AND MEI > 0.4
THEN ice cover = 91% (± 8.5%). (2)

The first rule describes a group of nine winters
with much-below-normal ice cover that went to the
right branches of the trees for Lake Superior (Fig.
3a) and Huron (Fig. 3b). The second rule character-
izes three cold winters on Lake Michigan (1977,
1979, and 1994) with an average ice cover of 91%.
It is important to note that the nine winters in the
first group are all winters of strongEl Niño events
(MEI > 0.8), while the winters in the second group
are winters of weak (0.4 < MEI < 0.8) El Niño
events. This opens a possibility for another hypoth-
esis that the effect of El Niño on ice cover may be
different for strong and weak El Niño events. Ad-
mittedly, the statistical significance of the above
rules is low, and the hypotheses require further rig-
orous testing, preferably on a new independent data
set. A detailed analysis of the relationship between
ice cover and ENSO events goes beyond the scope
of this paper. Here it was important to demonstrate
the ability of CART to generate new hypotheses
and show the direction where further research is
most needed.

SUMMARY AND CONCLUSIONS

Linear regression makes certain assumptions
about the data, which can lead to spurious high cor-
relations, or hide real relationships. For example,
the assumption that an independent variable affects
a whole data set the same way doesn’t always hold
for variables like ice cover. In the Great Lakes, ice
cover usually fluctuates at a certain level, specific
for each lake, with rare excursions to extremely low
or high values. It is very difficult for LR to model
this type of variability. In these tests CART has im-
proved on the accuracy of the LR models by as
much as 33% (Lake Erie). Even in those cases
where the explained variance of both models was
close (Lake Superior), the CART had fewer inde-
pendent variables than LR. This better performance
was achieved largely due to the robustness of
CART to the effects of outliers. Extreme values
among the independent variables generally affect

CART less because it tries to place them in separate
nodes. 

CART is a nonparametric procedure and does not
require specification of a functional form. When the
underlying model is unknown and little prior infor-
mation regarding variable selection is available,
CART can help to focus on variables of importance,
which makes it a useful exploratory tool. CART’s
performance can be much enhanced with a re-
searchers knowledge and experience and experi-
ments with various predictors. 

A major strength of the CART method lies in its
ability to provide insight into physical mechanisms
underlying statistical relationships. By presenting
these relationships in the form of a decision tree or
IF-THEN rules CART facilitates their interpreta-
tion. Often this interpretation goes parallel to the
process of the model construction and helps to de-
cide whether or not to grow the tree further and
which variable should be used for the split. 

Two variables – MEI and TNH – were found to
be strongly associated with the interannual varia-
tions in ice cover. The MEI index was either the
best or the second best choice for splitting of the
root node of the trees for all the lakes, except Lake
Ontario. The analysis of the trees shows that major
El Niño events (MEI > 0.8) are accompanied by a
significant reduction of ice cover in the Great
Lakes. Particularly mild winters are observed when
an El Niño event is combined with strong zonal cir-
culation over the East Atlantic. The TNH index was
the best choice for Lake Michigan and the second
best choice for all other lakes, except Lake Erie. It
splits the data into two approximately even groups.
Winters in the first group (TNH less than or equal
0.2) have on average much lighter ice cover than
winters in the second group (TNH is greater than
0.2). 

Since the goal of the CART algorithm is to split
the data into homogeneous groups of years, it is
natural to combine this method with use of compos-
ite maps, a popular statistical technique in climatol-
ogy. Composite 700-hPa height and SAT anomaly
maps were constructed for three groups of winters:
1) MEI > 0.8 (9 winters), 2) TNH ≤ 0.2 (19 win-
ters), and 3) TNH > 0.2 (15 winters). The analysis
of these maps has shown that a characteristic fea-
ture of atmospheric circulation during winters of
below-normal ice cover is a positive 700-hPa height
anomaly center over and to the north of the Great
Lakes. It indicates a weaker than normal Hudson
Bay low, suppressed troughing over eastern North
America and more zonal orientation of the jet
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stream. On the contrary, during winters with above-
normal ice cover, the Hudson Bay low is anom-
alously deep, which leads to more frequent
outbreaks of cold Arctic air. 

CART exhibits its greatest advantage over the LR
approach when applied to data with a highly nonlin-
ear structure. Many climatic processes are linear
only within certain limited interval and become
non-linear when the entire range of variation is con-
sidered. This appears to hold true for the relation-
ship between ENSO events and Great Lakes ice
cover. The CART model for Lake Superior reveals
that, although ice cover tends to be below normal
during El Niño events, mild winters can also occur
during strong La Niña events. Also, the model for
Lake Michigan suggests that the effect of strong
and weak El Niño events on ice cover may be dif-
ferent. More data are needed to confirm these hy-
potheses. Nevertheless, even with a relatively small
data set CART is capable of uncovering hidden re-
lationships and generating useful working hypothe-
ses. 
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